
www.aeroflex.com/Gaisler 9/11/13/!1!

New Features and IP Cores in the
GRLIB IP Library!

Jan Andersson!
Aeroflex Gaisler!
www.aeroflex.com/Gaisler!
2013 September 16!

9/11/13/!1!

www.aeroflex.com/Gaisler

What is GRLIB?!

▼  1. Collection of reusable IP cores written in
technology agnostic VHDL!
–  GRLIB tech. abstraction layer allows the same

IP core to be implemented on any technology!

▼  2. Template designs for wide range of
FPGA prototyping boards. ASIC templates
also available.!
–  Template = SoC design + test bench!
–  Template design configuration possible via GUI!

▼ Settings, enable/disable cores!
▼ Full customisation requires editing RTL!

▼  3. Script generation for EDA tools!

9/11/13/!2!

www.aeroflex.com/Gaisler

GRLIB: Complete Design Environment!

▼  IP!
–  Processors!
–  Peripherals!
–  Serial/Parallel interfaces!
–  Memory controllers!
–  AMBA 2.0 with PnP support!
–  Self-checking RTL!

▼  Template designs for  
range of boards!

▼  Portability between target technologies!
–  Technology maps for ASIC and FPGA!

9/11/13/!3!

www.aeroflex.com/Gaisler

GRLIB Distributions!

▼  Popular distributions!
–  GRLIB-GPL: LEON3, limited # of cores, no FT!
–  GRLIB-COM: LEON3, no FT cores!
–  GRLIB-L4-COM: LEON3/4, L2 cache, no FT!
–  GRLIB-FTFPGA: COM + FT cores, FPGA!

▼ Several combinations with SpW, FPU, 1553!
–  GRLIB-FT: FT for ASIC implementation!

▼  FT-FPGA targeted at rad-hard
programmable devices!

▼  Ready-made most popular variants:!
–  grlib-ftfpga / -grlfpu / -grlfpu-spw / -grfpu-spw / 

-spw / -1553!

9/11/13/!4!

www.aeroflex.com/Gaisler

New Features (0): Encrypted RTL!

▼  Past: Netlist used for LEON3FT, SpW, FPU!
–  Producing and verifying netlists is costly!
–  Subset of configurations available!
–  Simulation time increase!
–  Error injection inconvenient!

▼  Now: Replace netlists with encrypted RTL!
–  Benefits!

▼ One version per tool instead of multiple versions
per technology!

▼ Simulation at same speed as cleartext RTL!
▼ All configuration options available!

–  Drawbacks:!
▼ Tool costs, security!

9/11/13/!5!

www.aeroflex.com/Gaisler

New Features (1)!

▼  Support encrypted RTL!
–  Synopsys DC, Synplify, Xilinx ISE/Vivado,

Mentor Model/QuestaSim/Precision, Cadence !

▼  Improved script generation!
–  Aldec Riviera-Pro, Alint, Xilinx Vivado, Altera

Quartus!

▼  Support for Xilinx Vivado and PlanAhead!
▼  Support for Xilinx 7-series FPGA!

–  Template designs for Virtex-7, Kintex-7 and
Zynq development boards!

–  Artix-7 also supported, currently no template
design for development board!

9/11/13/!6!

www.aeroflex.com/Gaisler

New features (2)!

▼  Improved support for new Altera devices!
–  Extend support for Quartus features!
–  Additional template designs in development!

▼  Design and configuration guide!
–  Guideline document included with GRLIB !
–  Defines ”standard” LEON configurations!
–  http://www.gaisler.com/products/grlib/guide.pdf!

▼  Add-on package for Virtex-5QV!

9/11/13/!7!

www.aeroflex.com/Gaisler

Virtex-5QV Overview!

▼  Existing IP can already today be
implemented on V5QV!

▼  Add-on package to GRLIB FT-FPGA
created to simplify for users that want to
use complete LEON3/GRLIB design!
–  Adds example/template designs, build targets

and documentation!

▼  Main reasons for using LEON3/GRLIB:!
–  FT by design, no need to triplicate memories!
–  Proven IP cores, get processor, SpW, 1553, ..,

from one vendor.!

9/11/13/!8!

www.aeroflex.com/Gaisler

AEROFLEX GAISLER 7 FT-FPGA-XQR5V

3 LEON3/GRLIB Virtex-5QV Implementation Characteristics

3.1 Overview

The sections below list a number of LEON3/GRLIB design configurations and how much of the
Virtex5-QV device each configuration consumes. These results were obtained using ISE 13.2 with
Sirf overlay version 11 and TMRTool 2.2.24. The design used to obtain the results was the leon3-ft-
xqr5v template design.

3.2 Area Requirements for Standard LEON Configurations

Table 1 below shows the resource requirements for the minimal, general purpose and high perfor-
mance configurations of LEON3 as defined in the LEON/GRLIB Design and Configuration Guide
(doc/guide.pdf in GRLIB). The area requirements are for a full design consisting of:
• LEON3FT SPARC V8 in minimal (MIN), general purpose (GP) or high-performance (HP) con-

figuration with register file and L1 cache faul tolerance
• LEON3 debug support unit
• Serial Debug Link
• PROM/SRAM/SDRAM memory controller with EDAC (FTMCTRL)
• AHB Status register
• One 8-bit UART
• General purpose timer unit with two 32-bit timers and watchdog functionality
• General purpose I/O port with eight I/O lines

3.3 Design Example with Triplication

• LEON3FT SPARC V8 processor with hardware MUL/DIV support and branch prediction
Level 1 cache: 2x4 KiB instruction cache, 2x4 KiB data cache
MMU with eight instruction and eight data TLB entries
32x32 pipelined multiplier, single-vector trapping

Table 1. LEON3FT MIN/GP/HP resource utilisation

Resource

LEON3FT with
Minimal
configuration

LEON3FT
General-purpose
configuration

LEON3FT
High-
performance
configuration

Total
available

Slice logic utilization
Number of Slice Registers: 2659 (3%) 5696 (6%) 11157 (13%) 81,920 (100%)
Number of Slice LUTs: 6913 (8%) 12295 (15%) 25202 (30%) 81,920 (100%)
Slice Logic Distribution
Number of occupied Slices: 3302 (16%) 6399 (31%) 11751 (57%) 20,480 (100%)
Number of LUT Flip Flop pairs
used:

7537 14235 28806

Specific Feature Utilization
Number of 36k BlockRAM
used:

4 6 4

Number of 18k BlockRAM
used:

4 16 18

Virtex5 FX130 implementation #s !

9/11/13/!9!

!
▼  Also includes GPTIMER, UART, IRQCTRL,

AHBUART, AHBSTAT and FTMCTRL!
▼  LEON/GRLIB SoC: 8 to 30% of FPGA!

www.aeroflex.com/Gaisler

Virtex-5QV Summary!

▼  Virtex-5QV add-on summary:!
–  Template design with LEON3FT, FTMCTRL, PCI,

SpW, CAN, 1553, Ethernet, system peripherals!
▼ Select between GR-PCI-XC5V and custom 5QV!

–  Template design with LEON3FT, FTDDR2SPA,
PCI, Ethernet, system peripherals!
▼ Select target device between QV and COM device,

pinout for Xilinx ML510 development kit!
–  Documentation!
–  Make targets for!

▼ Pre-XTMR flow, TMRTool, XTMR flow!
–  Users can select between our CLI flow and

Xilinx GUI flow!

9/11/13/!10!

www.aeroflex.com/Gaisler

New IP cores!

▼  What is new IP to you?!
–  Following slides gives a quick overview of some

of our new iP!
–  GRLIB IP Core User’s Manual available from

http://www.gaisler.com lists all available IP!

▼  Removed IP: ATACTRL, AC97,
AHBCTRL_MB, HAPS and GE template
designs, CoreMP7 support, …!

!

9/11/13/!11!

www.aeroflex.com/Gaisler

GRLIB IP: NAND Flash Controller!

▼  NANDFCTRL – NAND Flash controller!
–  Bridge between ext. NAND Flash and AMBA!

!

–  ONFI 2.2, EDAC, memory maps internal buffers!

9/11/13/!12!

AEROFLEX GAISLER 854 GRIP

75 NANDFCTRL - NAND Flash Memory Controller

75.1 Overview

The NAND Flash Memory Controller (NANDFCTRL) core provides a bridge between external
NAND flash memory and the AMBA bus. The memory controller is an Open NAND Flash Interface
(ONFI) 2.2 command compliant core (see exceptions below) and it can communicate with multiple
parallel flash memory devices simultaneously, where each device in turn can consist of up to four
individually addressable targets, one target addressed at a time. The core is configured through a set of
AMBA APB registers, described in section 75.5, and data is written to / read from the flash memory
by accessing internal buffers mapped over AMBA AHB.
This document mainly describes the NANDFCTRL core’s functionality. For details about the actual
flash memory interface, flash memory architecture and ONFI 2.2 command set please refer to the
Open NAND Flash Interface specification, revision 2.2, hereafter called the ONFI 2.2 specification.

75.2 Operation

75.2.1 System overview

A block diagram of the core can be seen in figure 233. Features and limitations of the core are listed
below:
• All commands defined in the ONFI 2.2 standard are supported, except Synchronous Reset.
• The core does not implement support for the source synchronous data interface, only asynchro-

nous data interface.
• The core does not place any other limitation on the device architecture other than those specified

in the ONFI 2.2 standard. For example, the core does not need to know how many LUNs, blocks,
or pages a connected flash memory device has. (See the ONFI 2.2 specification for information
about LUNs, blocks, and pages.)

• Multiple parallel data lanes are supported, which gives the possibility to read / write several flash
memory devices at the same time.

• To support interleaving of flash memory accesses and AMBA accesses and give greater through-
put, two buffers for reading / writing flash memory data are implemented.

Figure 233. Block diagram

NANDFCTRL

CTRL

AMBA
APB
Slave

Target

BUFFER 0

AMBA
AHB
Slave

AM
BA

 A
HB

AM
BA

 A
PB

LUN

BUFFER 1

Device

Target

LUN

Device

Target

LUN

Device

Target

LUN

Device

lanes

targetsd[63:56], dh[63:56]

d[7:0], dh[7:0]

we0

we7

ce0 ce3

Note: One device might have more than one target, using one chip enable signal for each target.
This will reduce the number devices that can be placed horizontally in the figure.
All devices (and the internal targets) placed vertically in the figure belong to the same chip enable signal,
with individual write enable signals controlling each 8-bit/16-bit data lane.

www.aeroflex.com/Gaisler

GRLIB IP: Memory scrubber!

▼  Hardware memory scrubber!

–  Offloads processor!
–  Allows on-line code switch together with

FTDDR2SPA memory controller!
–  Useful for memory initialization!

9/11/13/!13!

AEROFLEX GAISLER 839 GRIP

72 MEMSCRUB - AHB Memory Scrubber and Status Register

72.1 Overview

The memory scrubber monitors an AMBA AHB bus for accesses triggering an error response, and for
correctable errors signaled from fault tolerant slaves on the bus. The core can be programmed to scrub
a memory area by reading through the memory and writing back the contents using a locked read-
write cycle whenever a correctable error is detected. It can also be programmed to initialize a memory
area to known values.
The memory scrubber core is largely backwards compatible with the AHBSTAT core, and can replace
it in many cases. Unlike AHBSTAT, the scrubber’s registers are accessed through the AMBA AHB
bus.

72.2 Operation

72.2.1 Errors

All AMBA AHB bus transactions are monitored and current HADDR, HWRITE, HMASTER and
HSIZE values are stored internally. When an error response (HRESP = “01”) is detected, an internal
counter is increased. When the counter exceeds a user-selected threshold, the status and address regis-
ter contents are frozen and the New Error (NE) bit is set to one. At the same time an interrupt is gen-
erated, as described hereunder.
The default threshold is zero and enabled on reset so the first error on the bus will generate an inter-
rupt.
Note that many of the fault tolerant units containing EDAC signal an un-correctable error as an
AMBA error response, so that it can be detected by the processor as described above.

72.2.2 Correctable errors

Not only error responses on the AHB bus can be detected. Many of the fault tolerant units containing
EDAC have a correctable error signal which is asserted each time a correctable error is detected.
When such an error is detected, the effect will be the same as for an AHB error response. The only
difference is that the Correctable Error (CE) bit in the status register is set to one when a correctable
error is detected. Correctable and uncorrectable errors use separate counters and threshold values.

Scrubber DMA

Registers

AHB Error monitorMemory with EDAC

ce

AMBA AHB

Figure 232. Memory scrubber block diagram

www.aeroflex.com/Gaisler

GRLIB IP: FTDDR2SPA!

▼  DDR2SPA-FT – Fault-tolerant DDR2
SDRAM controller!
–  Use with hardware memory scrubber to achieve

on-line code switch!

–  64/32/16 data bits, 32/16/8 check bits!

9/11/13/!14!

AEROFLEX GAISLER 181 GRIP

23 DDR2SPA - 16-, 32- and 64-bit Single-Port Asynchronous DDR2 Controller

23.1 Overview

DDR2SPA is a DDR2 SDRAM controller with AMBA AHB back-end. The controller can interface
16-, 32- or 64-bit wide DDR2 memory with one or two chip selects. The controller acts as a slave on
the AHB bus where it occupies a configurable amount of address space for DDR2 SDRAM access.
The DDR2 controller is programmed by writing to configuration registers mapped located in AHB I/
O address space.
Internally, DDR2SPA consists of a ABH/DDR2 controller and a technology specific DDR2 PHY.
Currently supported technologies for the PHY is Xilinx Virtex4 and Virtex5 and Altera StratixIII. The
modular design of DDR2SPA allows to add support for other target technologies in a simple manner.
The DDR2SPA is used in the following GRLIB template designs: leon3-xilinx-ml5xx, leon3-altera-
ep3sl150.

23.2 Operation

23.2.1 General

Single DDR2 SDRAM chips are typically 4,8 or 16 data bits wide. By putting multiple identical chips
side by side, wider SDRAM memory banks can be built. Since the command signals are common for
all chips, the memories behave as one single wide memory chip.
This memory controller supports one or two (identical) such 16/32/64-bit wide DDR2 SDRAM mem-
ory banks. The size of the memory can be programmed in binary steps between 8 Mbyte and 1024
Mbyte, or between 32 Mbyte and 4096 Mbyte. The DDR data width is set by the DDRBITS generic,
and will affect the width of DM, DQS and DQ signals. The DDR data width does not change the
behavior of the AHB interface, except for data latency.

23.2.2 Data transfers

An AHB read or write access to the controller will cause a corresponding access cycle to the external
DDR2 RAM. The cycle is started by performing an ACTIVATE command to the desired bank and
row, followed by a sequence of READ or WRITE commands (the count depending on memory width
and burst length setting). After the sequence, a PRECHARGE command is performed to deactivate
the SDRAM bank.

Figure 69. DDR2SPA Memory controller connected to AMBA bus and DDR2 SDRAM

DDR2

ADDRESS[16:2]
DATA[127:0]

RAS
CAS
WE

DDR2SDRASN
SDCASN
SDWEN

DQMSDDQM[15:0]

CLK
CSN

CLK
SDCSN[1:0]

CONTROLLER

AHB

SDCKE CKE

PHY
RAS
CAS
WE

16/32/64-bit DDR2

DQM

CLKN
CSN

CKE

Memory
CLK

ADDR[13:0]
BA[1:0]
DQ[63:0]

RAS
CAS
WE

DQM

CLK

CSN

CKE

CLKN

ADDR[13:0]
BA[1:0]

DQ[63:0]

DDR CLOCK

DDR2SPA

AHB SLAVE

CALl DQS[7:0]DQS[7:0]
DQSN[7:0] DQSN[7:0]

www.aeroflex.com/Gaisler

GRLIB IP: IOMMU!

▼  AHB/AHB bridge with access protection
and address translation!

▼  Masters placed in groups.!
–  Each group can be disabled, pass-through or be

associated with a protection data structure!

▼  Protection IOMMU or APV (global setting)!
–  APV – Access Protection Vector (bit vector)!

▼ Access protection only!
–  IOMMU – One-level page table!

▼ Access protection!
▼ Address translation!

9/11/13/!15!

AEROFLEX GAISLER 489 GRIP

52 GRIOMMU - AHB/AHB bridge with access protection and address translation

52.1 Overview

The core is used to connect two AMBA AHB buses clocked by synchronous clocks with any fre-
quency ratio. The two buses are connected through an interface pair consisting of an AHB slave and
an AHB master interface. AHB transfer forwarding is performed in one direction, where AHB trans-
fers to the slave interface are forwarded to the master interface. The core can be configured to provide
access protection and address translation for AMBA accesses traversing over the core. Access protec-
tion can be provided using a bit vector to restrict access to memory. Access protection and address
translation can also be provided using page tables in main memory, providing full IOMMU function-
ality. Both protection strategies allow devices to be placed into a configurable number of groups that
share data structures located in main memory. The protection and address translation functionality
provides protection for memory assigned to processes and operating systems from unwanted accesses
by units capable of direct memory access.
Applications of the core include system partitioning, clock domain partitioning, system expansion and
secure software partitioning.
Features offered by the core include:
• Single and burst AHB transfer forwarding
• Access protection and address translation that can provide full IOMMU functionality
• Devices can be placed into groups where a group shares page tables / access restriction vectors
• Hardware table-walk
• Efficient bus utilization through (optional) use of SPLIT response, data prefetching and posted

writes
• Read and write combining, improves bus utilization and allows connecting cores with differing

AMBA access size restrictions.
• Deadlock detection logic enables use of two uni-directional bridges to build a bi-directional

bridge. The core can be connected with an another instance of the core, or with a uni-directional
AHB/AHB bridge core (AHB2AHB), to form a bi-directional bridge.

BUS
CONTROL

 SLAVE 1

AHB System bus

Figure 156. System with core providing access restricion/address translation for masters on AHB IO bus

 SLAVE 2

 MASTER 1 MASTER 2 MASTER N

BUS
CONTROL

 MASTER 2

AHB IO bus

 MASTER 3

 MASTER 1 MASTER N

MASTER I/F

GRIOMMU

SLAVE I/F

(PROM) (MAIN MEMORY)

(PROCESSOR) (PROCESSOR) (DEBUG LINK)

(ETHERNET)

(ETHERNET) (PCI)

(SPACEWIRE)

SLAVE (REG)
I/F

www.aeroflex.com/Gaisler

GRLIB IP: Memory mapped AMBA!

▼  MMA – Memory mapped AMBA!
–  Attach companion device via memory-mapped

IO interface (UT699, UT699e, UT700)!
–  Provides bridge between SRAM/PROM/IO bus to

companion device’s AMBA system!
–  Low complexity interface (compared to RMAP)!
–  Acts as a master on AMBA bus!
–  Supports multiple banks, each connected to a

separate chip select. Programmable waitstates,
or bus ready function!

–  Propagates AMBA ERROR response on bus
error signal!

–  Available on request!

9/11/13/!16!

www.aeroflex.com/Gaisler

GRLIB IP: PCI Express Initiator/Target!

▼  PCI Express controller!
–  Target/Initiator, Initiator with DMA!
–  Currently only for Xilinx devices!

▼ Spartan 6, Virtex 5/6!
▼ Xilinx 7-series can be supported!

9/11/13/!17!

www.aeroflex.com/Gaisler

GRLIB IP: DMA Controller!

▼  GRDMAC – DMA controller!
–  Direct-Memory-Access (DMA) operations!
–  Multiple channels controlled by descriptors in

main memory, single operations possible via
register interface!

–  Will provide DMA functionality to cores such as
UART, SPI, I2C, GPIO, ..!

9/11/13/!18!

www.aeroflex.com/Gaisler

GRLIB IP: Avalon bridge, bus adapter!

▼  AHB2AVL – Async. AHB to Avalon adapter!
–  Designed for use with memory controllers!
–  Fixed size bursts with byte enabled, read data

valid signaling!
–  Separate AHB and Avalon clock domains!

▼  AHBSWA – Wide bus adapter!
–  Convert 64/128/256-bit accesses to 32-bit bursts!
–  Pass-through for 32-bit bursts!
–  Improves timing by acting as pipeline stage

between slave and bus!

9/11/13/!19!

www.aeroflex.com/Gaisler

GRLIB IP: New AHBJTAG, GRRT!

▼  Improved JTAG debug link (AHBJTAG)!
–  Allows TCK frequency > AHB frequency!
–  Primarily for ASIC designs that power-up with a

~1MHz system clock!

▼  GRRT – Minimal ”embedded RT” IP core!
–  Used to develop custom (hard) RT terminals!
–  Contains 1553 codecs and RT protocol logic!
–  User adds attaches logic using simple

synchronous interface!
–  1150 cells on Microsemi RTAX!

9/11/13/!20!

www.aeroflex.com/Gaisler

More information!

▼  GRLIB IP Library User’s Manual!
–  Describes IP library tool support and

infrastructure!
–  http://www.gaisler.com/products/grlib/grlib.pdf!

▼  GRLIB IP Core User’s Manual!
–  IP core documentation!
–  Lists all IP in table form and indicates in which

distribution(s) the IP is included!
–  http://www.gaisler.com!

▼  Inquiries:!
–  sales@gaisler.com!

9/11/13/!21!

www.aeroflex.com/Gaisler

Thank you for your attention.!

9/11/13/!22!

www.aeroflex.com/Gaisler

EXTRA SLIDES!

9/11/13/!23!

www.aeroflex.com/Gaisler

AEROFLEX GAISLER 775 GRIP

68.11 LEON3 versions

The primary way to identify the version of a implemented LEON3 processor is to look at the GRLIB
build ID, plug&play device identifier and plug&play core revision (part of plug&play information,
see GRLIB User’s Manual for additional information). This documentation applies to version 3 of the
LEON3 processor. Figure 196 shows the relationship between the different earlier LEON3 versions
and the current LEON3v3.

Section 68.5.11 describes the difference in data cache behaviour between (LEON3v3, LEON3FTv2)
and version 1 of the processor. Other features have been added incrementally to the processor without
increasing the processor core version.

68.12 Vendor and device identifiers

The core will have one of two device identifiers depending on if the processor has been implemented
with or without fault-tolerance features.
The standard core has vendor identifiers 0x01 (Aeroflex Gaisler) and device identifier 0x003.
If the core has been implemented with fault-tolerance features then the core will be identified with
vendor identifier 0x01 (Aeroflex Gaisler) and device identifier 0x053.
For a description of vendor and device identifiers see GRLIB IP Library User’s Manual.

68.13 Implementation

68.13.1 Area and timing

Both area and timing of the LEON3 core depends strongly on the selected configuration, target tech-
nology and the used synthesis tool. The table below indicates the typical figures for two baseline con-
figurations.

Table 982.Area and timing

Configuration

Actel AX2000 ASIC (0.13 um)

Cells RAM64 MHz Gates MHz
LEON3, 8 + 8 Kbyte cache 6,500 40 30 25,000 400
LEON3, 8 + 8 Kbyte cache + DSU3 7,500 40 25 30,000 400

LEON3v0

New data cache behaviour

LEON3v1 LEON3FTv1

Branch prediction added

Figure 196. LEON3 processor evolution

LEON3FTv2

LEON3v3

LEON3 Status!

▼  No new extensions planned!
▼  Best choice for most applications!

9/11/13/!24!

UT699	

LEON3-RTAX	

	

GR712RC	

	

UT699E/UT700	

FT-FPGA	

www.aeroflex.com/Gaisler

LEON4 Status!

▼  Currently used in several commercial
projects!
–  Mobile, crypto devices, …!

▼  FT in NGMP (ESA)!
–  http://microelectronics.esa.int/ngmp/!

▼  Quad-core development board available:
http://www.gaisler.com/gr-cpci-leon4-n2x!

▼  Several extensions planned to be rolled
out during the coming months!

9/11/13/!25!

